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Micro-bead mechanics with actin filaments

A. C. Maggs
PCT, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France

~Received 29 July 1997!

Many experiments have been performed using microscopic beads to probe the small-scale mechanics of
actin solutions. We calculate the minimum bead size needed to measure a valid macroscopic response function.
We find that the quasi-static response is characterized by an anomalous scaling as a function of the size of the
probing particles.@S1063-651X~97!12712-X#

PACS number~s!: 87.15.2v, 83.10.Nn
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Actin filaments are a beautiful model system for the stu
of the dynamics and rheology of semidilute polymers@1,2#.
They are characterized by length scales that are easily ac
sible with optical techniques allowing a detailed study
phenomena such as tube dynamics. However, the ma
scopic rheology of these systems has been hard to m
experimentally. Difficulties in purification and sample prep
ration lead to orders-of-magnitude variation in fundamen
properties such as the value of the plateau modulus@3–7#,
the standard measure of the response of an entangled
mer solution to external perturbations.

To get around the problems of macroscopic sample pre
ration and also to probe the local viscoelastic behavior
these materials, a number of experimental groups h
started using small, colloidal beads to study the mechanic
these materials@8–14#. One either pulls on the particles u
ing a magnetic field or simply observes the fluctuations
the particles undergoing Brownian motion. In this paper
shall try to attack the problem of what exactly one measu
in these experiments. In particular, how large do these
ticles have to be in order to measure a macroscopic ela
modulus and when do we expect to be sensitive to the i
vidual filament properties?

In contrast to flexible polymer solutions, there are tw
principal length scales present in a semidilute solution
actin: the mesh size and the persistence length. Naive a
cation of scaling ideas thus becomes a highly ambigu
exercise because an arbitrarily large number of intermed
lengths can be created by consideringj12al p

a with j the
mesh size andl p the persistence length. This ambiguity
lengths also translates into an ambiguity in the plateau mo
lus, which can be expressed askBT per characteristic vol-
ume. As an example of this difficulty we might quote tw
recent attempts to calculate the modulus in actin soluti
with scaling approaches@15,16# where completely differen
results were found. Indeed, this proliferation of lengths
already known for the tube geometry where one finds b
a51 1

5 and a52 1
5 @17–19#. We shall show in this article

that an intermediate scale witha5 3
5 becomes crucial in the

understanding of the elasticity of actin solutions at len
scales probed with micrometer-sized beads. At these sc
we show that the elasticity is characterized by an anoma
penetration of the response into the sample and unusual
ing with the size of the probing particle.

Most experiments using microbead rheology have b
analyzed with the implicit assumption that if one examin
571063-651X/98/57~2!/2091~4!/$15.00
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the system on a scale only slightly larger than the mesh
one should at once approach a continuum limit in wh
standard elastic theory must apply. Thus, even the sma
particles should give a passable estimate of the macrosc
modulus. A more subtle argument implies, however, t
much larger particles are needed: Macroscopic shear
sample produces an affine deformation of the local geom
of the sample~in which straight segments are rotated b
never bent!. Pulling on a small bead produces above al
bendingof nearby filaments with a characteristic radius co
parable to the bead size. To eliminate this nonaffine de
mation, one would argue that beads should be much la
than l p , and thus should have a diameter of at leastseveral
tens of micrometers. This argument is rather negative.
would imply that none of the present generation of expe
ments with beads up to 5m would be able to measure a vali
macroscopic response. We shall conclude that the trut
somewhere between these two extremes. A continu
theory is valid at small length scales; however, there is
important contribution to the energy from the nonaffine co
ponent of the deformation. This component becomes sm
for beads larger than the newintermediatelength scale; the
present generation of experiments should be able to mea
a macroscopic modulus.

Note that in this paper I am mostly interested in the lo
frequency mechanics and thus I exclude from the discus
high-frequency fluctuation measurements~up to 20 kHz!
which have been recently performed@12#; I will discuss the
quasistatic regime between 1023 Hz and 1021 Hz. I con-
clude this paper, however, with a few remarks on the f
quency range 1021–1011 Hz, where a crossover is expecte
to a stiffer macroscopic modulus@26#. This intermediate-
frequency regime requires the use of much larger bead
order to correctly study the macroscopic limit.

A coherent picture of the large-scale mechanics of n
cross-linked actin solutions is now available. The actin s
tem is usually polymerized@11# in conditions such that the
mean distance between filamentsj is between 0.3m and 1m.
j can be linked with the concentration of monomersc by
noting thatj;1/Acd with d the size of actin monomers. A
useful geometric quantity is the length of filament per u
volumer;1/j2. The filament is characterized by its persi
tence lengthl p , which is close to 15m @20#. For a single
weakly bent filament the energy of a configuration is giv
by @21#
2091 © 1998 The American Physical Society
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E5kBTlp/2E @]s
2r'~s!#2ds, ~1!

where r'(s) is the transverse fluctuation of the filame
about its equilibrium configuration.

In a manner which is familiar from flexible polymers, th
individual filaments are confined to a tube whose diame
scales asj6/5/ l p

1/5, the filament is confined to the tube b
collisions between the filament and its neighbors everyl e

;j4/5l p
1/5 @17,18#. l e is in some ways equivalent to the e

tanglement length in the Doi-Edwards tube model@22–24#.
The long-time dynamics and mechanics are dominated
the reptation of filaments along their tubes@5,24,26#. This
process has a characteristic time, the reptation time, w
defines the time scale beyond which the sample behaves
a viscous fluid~rather than an elastic solid! and can be as
long as several hours@5#. Under macroscopic shear, the lo
gitudinal stresses in a filament relax relatively rapidly@26#
leaving a residual contribution to the free energy that com
from the modification of the confinement of the filament
its tube. A simple argument for this free-energy contributi
is to countkBT per collision of the tube with the filamen
Thus the macroscopic modulus varies as

G;rkBT/ l e;c7/5/ l p
1/5, ~2!

as was recently confirmed by an explicit calculation@24,25#.
This picture of filaments confined to a tube is only true

time scales that are long enough for the filament to dyna
cally sample fluctuations on the scale ofl e . This time, which
is determined by the bending elasticity of the filaments, v
ies aste;h l e

4/ l pkBT;10 Hz @25#. This is our reason for
restricting our treatment to lower frequencies; at higher f
quencies one is presumably sensitive to individual filam
dynamics~coupled by hydrodynamics!, rather than the col-
lective, entangled, modes that interest us in this paper.
frequencies lower than the inverse reptation time~i.e., fre-
quencies comparable to 1023 Hz! the sample behaves as
fluid and the bead moves freely as filaments slide out of
way of the particles.

Before moving on to the problem of the behavior of ac
solutions, we shall revise a Peierls-like argument from wh
we can deduce the basic scaling behavior of a normal ela
solid. We shall then adapt this argument to the case of se
flexible filaments. Consider a bead of radiusR embedded in
an elastic medium ind dimensions. If we pull on the particle
with a force f we can make the following variational ansa
in order to find the minimum energy configuration. Let
assume that the material is disturbed over a distancel from
the bead; then the elastic energy will scale in the follow
manner:

Evar;GE ~¹a!2dV, ~3!

wherea is an amplitude of displacement,G an elastic con-
stant, and the integral is over the variational volumeV; l d.
This scales as

Evar;G~a/ l !2l d. ~4!
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We see that in less than two dimensions an arbitrarily sm
force is able to displace the bead large distances bec
Evar can be made small by increasing the variational para
eter l . In three dimensions, however, the energy diverg
with l and has a lower bound for smalll due to the short-
wavelength cutoff coming from the finite size of the bea
Thus the minimum energy is found forl;R and we deduce
that Evar'Ga2R. At constant force the displacement scal
inversely with the bead size,

a' f /GR. ~5!

A full calculation of the response of an isotropic viscoelas
material has recently been performed and confirms
simple scaling argument@12#.

This argument is perhaps a little too simple. We see t
there is an asymmetry in the problem coming from the
rection in which we apply the forcef , and we should worry
that the volume excited is not spherical as has been assu
in the argument. Let us perform a slightly more elabor
variational treatment where we assume that the volumeV is
characterized by a disk of dimensionsl 3 l 3D where the
particle excites modes of wavelengthl that penetrate a dis
tanceD into the sample in the direction off . In this case our
estimate forEvar is

Evar;~ l 2D !G@~a/ l !21~a/D !2#, ~6!

wherea/ l and a/D are estimates of the components of t
strain tensor in the material. TakingD as a variational pa-
rameter, one sees thatD; l and the problem reduces to th
considered above.

How must this argument be modified in the actin syste
Experiments are performed with beads which vary in s
from 0.2m to 5m. The smallest beads pass between the fi
ments and diffuse almost freely@11#; they will not concern
us any further. Are we able to use continuum elastic ar
ments ~like that above! to deduce the experimental stres
strain relationships? We now argue that in actin solutio
there are now two contributions to the variational ener
Evar . For large beads the normal affine elasticity~summa-
rized above! dominates; for smaller beads, however, a diffe
ent elastic response is found. Consider a volumeV distorted
by a force on a particle of sizeR ~Fig. 1!. Again we take this
volume as anisotropic with dimensionsl 3 l 3D. In this vol-

FIG. 1. Schematic representation of the bending of filament
a region of dimensionsl 3 l 3D. Filaments crossing the volum
horizontally are excited with wavelengthl ~A!. Filaments passing
vertically through the region are relatively undisturbed~C!. In the
geometry shown here~with D, l ), filaments passing in diagonal ar
excited with wavelength comparable toD.
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57 2093MICRO-BEAD MECHANICS WITH ACTIN FILAMENTS
ume the filaments that traverse the volume perpendicularf
bend with a wavelengthl . Those filaments that are parallel
f do not contribute to the bending energy, since they are
to slide along their tubes; however, filaments somewhat
clined to f will be bent with a wavelengthD.

The total nonaffine contribution to the energy from~1! is
thus

E1;~ l 2D !~a2kBTlp / l 41a2kBTlp /D4!r. ~7!

The three multiplicative factors are, respectively, the volu
excited, the bending energy per unit length of filament, a
the filament density within the volume.a is again the typical
amplitude of the excitation in the volume. To this bendi
contribution one must add the equivalent ofEvar in Eq. ~6!:
When we impose the bending on the volumeV there is also
a variation in the geometry of the confining tubes. For
stance, in the direction off the confining tubes are com
pressed by a factora/D, which is coupled to the macroscop
modulus. There is thus a contribution to the energy of
form

E2;~ l 2D !@~a/ l !21~a/D !2#~rkBT/ l e!, ~8!

where we have again, respectively, the volume, the squ
elastic strain, and the macroscopic elastic modulus from
~2!. We can now optimizeE11E2 by minimizing overD,
finding D; l . Substituting forD in E11E2 one finds

Ee f f;a2rkBT~ l p / l 1 l / l e!. ~9!

We conclude that there is an important new length sc
in the problem. For excitations with wavelengths greater th

l c5Al el p;j2/5l p
3/5 ~10!

the contributions inE2 are going to dominate the elasticit
and we are back to the case of normal affine elastic the
However, the structure of the energy~9! is very different
from the corresponding equation for normal elastic sol
~4!. The short-wavelength cutoff is no longer determined
the bead size but rather by the intrinsic properties of
solution itself; even if we excite the medium with a smal
particle the minimum-energy configuration is one in whi
the energy cost is shared by the bending of the filaments
compression of the confining tubes. The optimum size
excitation is given byl;Al el p. Substituting Eq.~10! in Eq.
~9! gives

Ee f f;ra2kBTAl p

l e
. ~11!

This is one of the important results of this paper and allo
us to calculate the response due to small beads. From
~11! we find that under the influence of thermal fluctuatio
the typical excursion of a small bead should scale as

a;j/~ l p / l e!
1/4 ~12!

independent ofR. What happens if we interpret the fluctu
tions as a macroscopic modulus and examine its behavio
a function of concentration? In this case we would find th
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Ge f f;c6/5l p
2/5, ~13!

thus the effective modulus scales with a smaller power of
concentration than the true modulus Eq.~2!.

Substituting typical values for material constants,j
;0.5m, l p;15m we find thatl e;1m. The crossover length
scalel c;4m. These values are clearly only estimates, sin
simple scaling arguments are incapable of giving precise
merical values. However, we feel that they should be at le
a reasonable guide to the experimental situation. We t
expect a series of crossovers as a function of probing wa
length.~a! The smallest beads diffuse freely in the solutio
~b! For j, l , l c nonaffine excitations of the solution are im
portant with anomalous penetration of the excitation into
sample.~c! For l . l c the elasticity becomes affine.

We conclude that to measure a valid macroscopic
sponse function, particle sizes should be at leastl c ; the sec-
ond argument of the introduction concerning the bead s
for which affine elasticity becomes valid is too pessimist
Recent experiments seem be consistent with some of the
sults given here@12#. At high frequencies the experimenta
amplitudes scale as 1/R. However, at low frequencies th
authors explicitly remark that the amplitudes are only wea
dependent on the bead size in the range 0.5m to 5m.

Until now we have considered the low-frequency r
sponse of a sample, that is, times long enough for all lon
tudinal stresses to have relaxed along the tube. It has b
shown@26# that one expects two plateau moduli as a funct
of frequency. The low-frequency plateau used in the ab
discussion comes from variation in tube geometry un
sample deformation. The second, much larger, contribut
which dominates at higher frequencies, comes from coup
of the shear to the longitudinal density fluctuations of t
filament in its tube. Can we see the crossover between
low-frequency and high-frequency behavior with micro-be
techniques? This question is difficult to answer; the sta
approach used above is not adapted to answering this
namic question; however, we can certainly expect that
frequency of crossover between the two regimes will va
with the bead size.

The regime of the high plateau in macroscopic rheology
delimited by the two timeste;0.1 s andte( l p / l e)

2;10 s.
This second time is the time needed for excitations to diffu
a distancel p along the tube. It is important because mac
scopic shear produces density fluctuations along the tube
are coherent over a distancel p . When we excite a sample
with a wavelengthl , which is smaller thanl p , we expect that
the window of times for the observation of this high plate
is reduced to the interval betweente and te( l / l e)

2. For the
smallest beads, this high second plateau should almost c
pletely disappear. Even with larger beads, the elastic mo
lus should be substantially underestimated over certain
quency ranges. More detailed discussion of this regi
seems to be difficult without a detaileddynamictheory of the
coupling of the bend and longitudinal degrees of freedo
Thus, even though the smaller, long-time modulus should
accessible to micro-bead techniques it may prove m
harder to study the larger short-time modulus. For this ca
the beads should really be large compared withl p and not in
comparison with the smaller lengthl c .
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To conclude, actin mechanics shows a quite rich serie
crossover in the response functionG(q,v). We have simple
arguments for the wave-vector dependence of this functio
frequencies between 1023 and 10 Hz. Further work require
a full dynamic theory of the coupling between bending a
density fluctuations. We have shown that the present gen
tion of microbead experiments should be capable of mea
ing a valid macroscopic modulus at low frequencies, c
trary to some simple arguments. In the time rangete–
te( l p / l e)

2 the micro-bead technique probably substantia
underestimates the modulus.

Smaller beads should display an anomalous scaling o
sponse as a function of bead size. Recent experiment
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ready seem to show this effect@12#. It should also be noted
that the results will be rather sensitive to the length of fi
ments in the sample and that the above results are only v
in the limit that the mean length is greater thanl c . When the
filaments are shorter than this, the schematic representa
of Fig. 1, where filaments cross the excitation volume, is
longer valid. For such short filaments, it has also been sho
@24# that there is an important orientational contribution
the elastic response which should also be added to
present discussion. Since the length of filaments can
modulated with capping agents, one expects an interes
evolution of the response as a function of the capping c
centration.
ol.

s

@1# J. Kas, H. Strey, and E. Sackmann, Nature~London! 368, 226
~1994!.

@2# J. Kas, H. Strey, J.X. Tang, D. Finger, R. Ezzell, E. Sackma
and P. Janmey, J. Cell. Biol.70 , 609 ~1995!.

@3# T.D. Pollard, I. Goldberg, and W.H. Schwarz, J. Biol. Che
267, 20 339~1992!.

@4# K.S. Zaner, J. Biol. Chem.261, 7615~1986!.
@5# O. Muller, H.E. Gaub, M. Barmann, and E. Sackmann, Ma

romolecules24, 3111~1991!.
@6# R. Ruddies, W.H. Goldmann, G. Isenberg, and E. Sackma

Eur. Biophys. J.22, 309 ~1993!.
@7# P. Janmey, S. Hvidt, J. Peetermans, J. Lamb, J.D. Ferry,

T.P. Stossel, Biochemistry27, 8218~1988!.
@8# K.S. Zaner and P.A. Valberg, J. Cell. Biol.109, 2233~1989!.
@9# F. Ziemann, J. Radler, and E. Sackmann, Biophys. J.66, 1

~1994!.
@10# F. Amblard, A. C. Maggs, B. Yurke, A. Pargellis, and

Leibler, Phys. Rev. Lett.77, 4470~1996!.
@11# C. F. Schmidt, M. Bremann, G. Isenberg, and E. Sackma

Macromolecules22, 3638~1989!.
@12# B. Schnurr, F. Gittes, P.D. Olmsted, C.F. Schmidt, and F

MacKintosh, Macromolecules~to be published!; F. Gittes, B.
Schnurr, P.D. Olmsted, F.C. MacKintosh, and C.F. Schm
Phys. Rev. Lett.79, 3286~1997!.
,

.

-

n,

nd

n,

.

t,

@13# D. Weitz ~unpublished!; A. Palmer, K. Rufner, and D. Wirtz
~unpublished!.

@14# F.G. Schmidt, F. Ziemann, E.Sackmann, Eur. Biophys. J.24,
348 ~1996!.

@15# F. Mackintosh, J. Kas, and P. Janmey, Phys. Rev. Lett.75,
4425 ~1995!.

@16# K. Kroy and E. Frey, Phys. Rev. Lett.77, 306 ~1996!.
@17# A.N. Semenov, J. Chem. Soc. Faraday Trans. 2,82, 317

~1986!.
@18# A.N. Semenov, Physica AA166, 263 ~1990!.
@19# T. Odijk, Macromolecules19, 2073~1986!.
@20# F. Gittes, B. Mickey, J. Nettleton, and J. Howard, J. Cell. Bi

120, 923 ~1993!.
@21# L. Landau, E.M. Lifshitz, Theory of Elasticity~Pergamon

Press, Oxford, 1986!.
@22# M. Doi and S.F. Edwards,Dynamics of Polymer Solution

~Oxford University Press, Oxford, 1986!.
@23# P.G. de Gennes,Scaling Theory of Polymer Physics~Cornell

University Press, Ithaca, 1979!.
@24# D. Morse, Macromolecules~to be published!.
@25# H. Isambert and A.C. Maggs, Macromolecules29, 1036

~1996!.
@26# A.C. Maggs, Phys. Rev. E55, 7396~1997!.


